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ABSTRACT 

This paper describes the extension of a building 

management system with an interface that allows the 

import of simulation models, control, and fault detection 

(FDD) algorithms. This interface is based on the 

Functional Mock-up Interface (FMI), and the Building 

Automation Java Architecture (Baja) standards. This 

allows HVAC designers and control vendors a) 

developing, testing and improving control and FDD 

algorithms under a wide range of conditions in 

simulation, b) exporting them in a code which 

implements the FMI standard, and c) importing them in 

building management system for deployment or to 

support building operation.  

We anticipate the proposed approach to facilitate the 

deployment of control and FDD algorithms on building 

management systems, and the use of simulation models 

during the operation of the building, such as the real-time 

comparison of actual performance relative to design 

intent. 

INTRODUCTION 

Building owners could save an average of 38% on their 

heating and cooling bills if they installed energy efficient 

controls that make their heating, ventilation and air 

conditioning (HVAC) systems more energy efficient 

(Wang et al., 2011). 

A cost-effective path to improve the energy efficiency of 

buildings could be achieved by replacing mal-

functioning or energy-wasting control algorithms with 

better ones. Although there is a large number of well-

developed control technologies and algorithms available 

(Hydeman et al., 2003); their adoption is slow. This is 

correlated with their deployment cost and the risk of mal-

functioning due to limited code testing. To deploy such 

control algorithms, engineering firms and retro-

commissioning agents need to be familiar with different 

building management systems (BMS), each vendor 

requiring a new implementation. This complicates the 

implementation and increases cost.  

As the demand for low-energy buildings increases, their 

control and fault detection and diagnostics (FDD) 

algorithms become more complex. Implementing such 

algorithms is challenging, since they require 

mathematical routines and functions that are not 

provided by standard BMS. There is a strong need for an 

open standard interface in the software layer for BMS 

which a) supports the import, and deployment of control 

and FDD algorithms, and b) facilitates the use of 

simulation models for building operation.  

We selected the Functional Mock-up Interface (FMI) 

standard as open standard interface. The FMI 

standardizes an Application Programming Interface 

(API) that allows control algorithms, FDD algorithms or 

models of physical processes to be included in 

simulation programs or control hardware. It enables also 

the interoperability and exchange of these models across 

different platforms. We extended a BMS that is based on 

the Building Automation Java Architecture standard 

(Baja) with the FMI standard. This interface allows the 

BMS to import and use any control algorithm embedded 

in a simulation model which implements this API. 

Furthermore, it reduces engineering cost associated with 

the deployment of such algorithms on different BMS as 

the API is standardized. It provides a robust pathway to 

use simulation during building operation.  

This paper is structured as follows: Section 2 introduces 

the FMI standard. Section 3 describes the BMS which 

has been used in this article. Section 4 shows the 

implementation of the FMI standard in the BMS. Section 

5 shows applications which demonstrate the usefulness 

of this approach.  Section 6 summarizes our findings. 

FUNCTIONAL MOCK-UP INTERFACE 

The FMI standard has originally been developed in the 

Information Technology for European Advancement 

(ITEA2) project MODELISAR. The development of the 

FMI standard has been initiated by Daimler, is being 
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further developed by 16 companies and research 

institutes and is currently supported by over 50 

programs. See FMI Standard (FMI Standard, 2013) for 

an exhaustive list of programs. 

The FMI standard is intended to support model exchange 

and co-simulation of dynamic models using a 

combination of XML1-file, optional C-code and/or 

shared libraries.  

The FMI standard version 1.0, which has been used in 

this contribution, consists of three parts:  

a) FMI for model exchange, which standardizes an 

interface for coupling simulation programs that are 

integrated in time by an external solver 

(MODELISAR-Consortium, 2010b).  

b) FMI for co-simulation, which standardizes an 

interface for coupling simulation programs that 

contain their own solver for time integration 

(MODELISAR-Consortium, 2010a).  

c) FMI for Product Lifecycle Management, which 

provides a standardized way to handle FMI related 

data (MODELISAR-Consortium, 2011).  

A system model or simulation program which 

implements the FMI standard is called a Functional 

Mock-up Unit (FMU). An FMU is implemented as a zip-

file. An FMU contains the FMI model description file, 

which is an XML-file with information needed by an 

import program, optional C-code and/or shared libraries 

required to interface with the model or simulation 

program, and resource files such as data tables (see 

Figure 1). 

This contribution uses the FMI for co-simulation 

application programming interface (API). This API 

provides two implementations, namely 

CoSimulation_Tool and CoSimulation_StandAlone. In 

the CoSimulation_Tool implementation, the FMU 

contains a wrapper for shared libraries that interact with 

the slave program so that a master program which 

imports the FMU can interface with the slave program in 

a standardized way. In the CoSimulation_StandAlone 

implementation, the FMU contains the model and a 

solver. 

                                                           
1 XML stands for extensive Markup Language. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 shows how a simulation program, which 

supports the FMI API, can export a sub-system model as 

an FMU for model exchange or for co-simulation. In the 

co-simulation case, the sub-system is exported with a 

solver for time integration.  

 

Figure 2 Exporting an FMU for co-simulation or model 

exchange (MODELISAR-Consortium, 2010a). 

State-of-the art of FMI in building community 

The FMI standard has been used in the buildings 

community primarly to link simulation programs for co-

simulation. Recent efforts are going on within the IEA 

EBC Annex 60 (IEA EBC Annex 60, 2012) to develop 

the next generation computational tools based on the 

Modelica (Mattsson and Elmqvist, 1997) and the FMI 
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                   Figure 1 Structure of an FMU file. 
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standards. An FMI for co-simulation has been 

implemented in WUFI Plus (Pazold et al., 2012) to 

integrate Modelica models to it. The Institute for the 

Sustainable Performance of Buildings has been 

developing a web-based eLearning tool in which a Web 

interface communicates with FMUs for co-simulation, 

which are used to simulate heat transfer through building 

envelope, HVAC systems, control systems and 

equipment faults of a building, and visualize this 

response at an  interactive web browser through WebGL 

(Deringer et al., 2012). The University of California at 

Berkeley and the Lawrence Berkeley National 

Laboratory (LBNL) have developed an FMU import 

interface for co-simulation in the Building Controls 

Virtual Test Bed (Wetter, 2011). LBNL released an 

FMU import interface for co-simulation in EnergyPlus 

(Nouidui et al., 2014), and a software utility which 

exports EnergyPlus as an FMU for co-simulation 

(Nouidui et al., 2013). The Austria Institute of 

Technology has developed an FMU import interface in 

TRNSYS to support the integration of Modelica-based 

types within TRNSYS (Elsheikh et al., 2013). 

Fraunhofer IBP is working on developing an FMI in 

CoSimA+ which is a framework for coupling of 

distributed, heterogeneous numerical models (Treeck et 

al., 2011).  

Although the FMI standard is increasingly used in the 

buildings community, there seems to be no related work 

that integrates this interface in hardware such as BMS. 

This could provide a pathway for deployment of control 

and FDD algorithms, and the coupling of simulation 

models, or programs with measurements for building 

operation. This contribution aims to address this gap by 

implementing an FMI in the NiagaraAX framework. We 

selected the NiagaraAX framework because of its open-

source architecture and its wide use in the buildings 

industry. 

NIAGARA AX - BUILDING 

MANAGEMENT SYSTEM 

The NiagaraAX is an open, Java-based framework which 

creates a common environment to connect devices of 

different manufacturers or communication protocols. 

NiagaraAX models the data and behavior of the devices 

using normalized software components. NiagaraAX uses 

the Common Object Model to normalize any device 

which is connected to it. The framework takes data 

elements such as the inputs, outputs, setpoints, 

schedules, control parameters of devices and converts 

them into normalized software components. 

                                                           
2 jAR stands for java ARchive which is a package file 

format used to aggregate many java class files. 

This is achieved by unifying the attributes of the devices, 

creating a database of objects that can talk to and work 

coherently with each other. NiagaraAX implements the 

Baja API (Tridium and Sun-Microsystems, 2000) to 

model the devices. Baja is an open standard developed 

by Tridium and the Java community. Baja uses the Java 

API and an XML schema to allow developers to convert 

multi-vendor device protocols and communication 

standards with Internet technologies into a single 

universal standard and adapt them into an open, 

interoperable environment. NiagaraAX supports different 

protocols such as BACnet (ASHRAE, 1987) and 

LonWorks (ECHELON, 1999). 

FUNCTIONAL MOCK-UP INTERFACE IN 

NIAGARAAX 

Implementation 

To import FMUs for co-simulation in NiagaraAX, we 

developed and added a new module called fmu.jar2 to 

NiagaraAX. This module contains two Java classes called  

BFMUService  and BFMUComponent which allow 

importing FMUs in the framework, where they can then 

be linked to other NiagaraAX modules. 

The two classes BFMUService and BFMUComponent use 

JFMI (Brooks et al., 2012) to import FMUs in NiagaraAX. 

JFMI is a software package written in Java and co-

developed by the authors of this contribution. JFMI 

allows interfacing Java applications with FMUs for co-

simulation or model exchange. For example, JFMI can 

be used to unzip an FMU, parse the model description 

file, and perform a co-simulation.  

BFMUService 

BFMUService inherits BAbstractService, a class which 

provides different services such as a web service to 

NiagaraAX. These services are automatically started 

when the framework is launched. In our implementation, 

BFMUService uses JFMI to import and unzip an FMU, and 

to retrieve the FMU’s properties. BFMUService can be 

used to load different FMUs in the framework. 

BFMUService implements two main functions, 

doImportFMU(), and parseFile() which are described below: 

public void doImportFMU(…)  
This method imports an FMU which is specified by 

providing a path to the FMU’s location. This method 

calls functions provided by JFMI to unzip and parse the 

model description file. 

private void parseFile(…)  
This method uses JFMI to parse the model description 

file of the FMU. It then retrieves the names of all  FMU 
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variables with the causality “input” and “output”. These 

variables are saved in a hashtable with the key being the 

name of the FMU and the values being its properties.. 

BFMUComponent 

BFMUComponent inherits BComponent, which is one of the 

core Baja’s types used to normalize objects in NiagaraAX. 

BFMUComponent is used in our implementation to 

instantiate an FMU in NiagaraAX.  Figure 3 shows such 

an instance. BFMUComponent implements the five major 

functions doCreatePorts(), doRunSimulation(),   changed(), 
executeFMUComputation(), and doForcedEndSimulation (),  
which are described below: 

public void doCreatePorts(…)  
This method retrieves the properties of a given FMU 

from the hashtable created by BFMUService, and creates a 

block in the framework which has as many slots3 as the 

number of inputs and outputs of the FMU.  

public void doRunSimulation(…)  
This method is called at the beginning of an  FMU 

simulation. It loads the FMU’s shared library and checks 

whether the FMI functions exist in the library. It then 

instantiates and initializes the FMU by calling 

fmiInstantiateSlave() and fmiInitializeSlave() respectively.  

public void changed(…) 
This method fires whenever an input or a parameter of 

the BComponent changed. This method determines 

whether all inputs of the BComponent are provided, in 

which case it calls executeFMUComputation to trigger the 

computation. 

private void executeFMUComputation(…)  
This method takes the inputs of the BFMUComponent, 
converts them to a format that can be used by the FMU, 

sets the inputs of the FMU by calling fmiSetReal(), does a 

time integration by calling fmiDoStep(), retrieves the 

outputs of the FMU by calling fmiGetReal(), and converts 

them to a format that can be sent to NiagaraAX. At the 

end of the simulation, this method calls 

fmiTerminateSlave() to terminate the FMU, and 

fmiFreeSlaveInstance() to release it. 

public void doForcedEndSimulation(…) 
This method is used to force the end of the simulation of 

an FMU. This method checks first if the FMU for which 

the simulation should be aborted has been previously 

instantiated. It then calls fmiTerminateSlave() and 

fmiFreeSlaveInstance() to terminate and release the FMU. 

 

                                                           
3 A slot is an object port which allows a component in 

NiagaraAX to be connected to other components.  

 

Figure 3 Example of an FMU imported in 

NiagaraAX. 

APPLICATIONS 

The addition of an FMU import interface in NiagaraAX 

enables various applications. In this section, we present 

three possible applications. 

Monitoring of actual performance relative to design 

intent 

During the design, an HVAC designer creates a 

simulation model of a building and its HVAC system and 

controls. He then exports the model as an FMU for co-

simulation and imports it to NiagaraAX. In NiagaraAX, he 

links the model input to measured data. The design 

model can then be used to compute expected room air 

temperature or energy consumption, which in turn can be 

used to compare measured with expected performance.  

Figure 4 shows the model of a building which has been 

used to demonstrate this use case. The building model is 

the one used in Case600 of ANSI/ASHRAE Standard 

140 (ANSI/ASHRAE, 2007).  

 

 

Figure 4 Building model of Case600 

(ANSI/ASHRAE, 2007). 

As a first step, the HVAC engineer develops a model of 

the building and its HVAC and control system in 

Modelica. Figure 5 shows the Modelica implementation 

of Case600. The building model has been constructed 

using component models of the Modelica Buildings 

library (Wetter et al., 2014). The building model consists 
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of three main parts, the building envelope (1), an air-

based HVAC system (2), and a PI-controller (3) which is 

used to control the room air temperature. 

As a second step, the HVAC engineer simulates the 

building model along with its HVAC and control system 

to ensure correctness of the control algorithms. 

As a third step, the model of the building with its HVAC 

and control system is exported as an FMU for co-

simulation and imported into NiagaraAX. This model 

can then run in real-time to predict the expected 

performance of the building. 

Since at the time of this writing, the NiagaraAX 

framework was not physically connected to any device, 

we used a signal generator in NiagaraAX to emulate the 

room air temperature that could have been measured and 

made available in NiagaraAX. The FMU itself has an 

output port which reports the simulated room air 

temperature. These two quantities can be used to 

compare measured and expected performance. The 

framework can then use some of its services to report 

potential discrepancies to the building manager (see 

Figure 6). 

 

  

 

Figure 5 Modelica implementation of building model with HVAC and control system. 
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Figure 6 Simulation-based performance monitoring in NiagaraAX. 

 

Model-based FDD 

A researcher or product developer may develop an FDD 

algorithm for systems such as Air Handling Units 

(AHU). In this process, he selects from a library of 

HVAC components the specific components that will 

form the different AHUs. Next, he connects them to 

create the system model, and then enters the information 

he has collected from the physical system. This 

information includes the heat flow characteristics of the 

heating and cooling coils, and the duct pressure drop and 

flow rate at the design conditions. The developed model 

will then be calibrated. Once the model is calibrated, it 

will be integrated into a FDD simulation model, which 

will support the following analysis: 

1. During fault detection, the model will be used to 

compute the expected sensor values, which are then 

compared to measured data. 

2. During fault diagnostics, the model will emulate the 

signature of different fault scenarios. The model 

outputs for these fault scenarios are then compared 

to the observed measurements in order to diagnose 

the fault. 

The researcher will test this model in simulation, and 

then export the model as an FMU for co-simulation. This 

FMU can then be imported in NiagaraAX and be linked 

with an actual building energy system. 

Design and deployment of control algorithms 

A researcher, product developer or advanced HVAC 

engineer develops and tests an advanced control 

algorithm in simulation, exports it as an FMU for co-

simulation, and imports it to NiagaraAX to link it to an 

actual building for closed loop control.  

CONCLUSION 

The Functional Mock-up Interface standard is well 

suited to deploy control algorithms. We anticipate the 

integration of FMI in BMS to facilitate the deployment 

of control algorithms and FDD algorithms that have been 

tested in simulation, as well as the deployment of 

simulation models to assist real-time monitoring, FDD 

and model-based controls. We therefore anticipate the 

integration of FMI in BMS to facilitate the reuse of 

simulation models from the design phase to the operation 

phase of buildings, thereby contributing to closing the 

performance gap between predicted and actual energy 

use. Future work will include applications such as 

hardware-in-the-loop or performance monitoring of 

buildings where the NiagaraAX framework is physically 

connected to real devices, and linked to simulation tools 

through its FMI. 
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